Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8002): 123-129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383781

RESUMO

Baleen whales (mysticetes) use vocalizations to mediate their complex social and reproductive behaviours in vast, opaque marine environments1. Adapting to an obligate aquatic lifestyle demanded fundamental physiological changes to efficiently produce sound, including laryngeal specializations2-4. Whereas toothed whales (odontocetes) evolved a nasal vocal organ5, mysticetes have been thought to use the larynx for sound production1,6-8. However, there has been no direct demonstration that the mysticete larynx can phonate, or if it does, how it produces the great diversity of mysticete sounds9. Here we combine experiments on the excised larynx of three mysticete species with detailed anatomy and computational models to show that mysticetes evolved unique laryngeal structures for sound production. These structures allow some of the largest animals that ever lived to efficiently produce frequency-modulated, low-frequency calls. Furthermore, we show that this phonation mechanism is likely to be ancestral to all mysticetes and shares its fundamental physical basis with most terrestrial mammals, including humans10, birds11, and their closest relatives, odontocetes5. However, these laryngeal structures set insurmountable physiological limits to the frequency range and depth of their vocalizations, preventing them from escaping anthropogenic vessel noise12,13 and communicating at great depths14, thereby greatly reducing their active communication range.


Assuntos
Evolução Biológica , Baleias , Animais , Humanos , Baleias/fisiologia , Som
2.
Scand J Med Sci Sports ; 28(12): 2579-2591, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30043997

RESUMO

Muscle strain injuries disrupt the muscle-tendon unit, early rehabilitation is associated with a faster return to sports (RTS), but the time course of tissue healing remains sparsely described. The purpose was to examine tissue regeneration and the effectiveness of early versus delayed rehabilitation onset on functional and structural recovery after strain injuries. A total of 50 recreational athletes with a severe acute strain injury in their thigh or calf muscles were randomized to early or delayed rehabilitation onset. Magnetic resonance imaging (MRI) was obtained initially, 3 and 6 months postinjury, and dynamic contrast-enhanced MRI (DCE-MRI) estimated tissue inflammation initially and after 6 months. Muscle strength was determined 5 weeks, 3 months, and 6 months postinjury, and a questionnaire determined soreness, pain, and confidence. DCE-MRI microvascular perfusion was higher in the injured compared to an uninjured muscle acutely (P < 0.01) and after 6 months (P < 0.01), for both groups (P > 0.05) and unrelated to RTS (P > 0.05). Total volume of the injured muscle decreased from the acute to the 3-month scan, and to the 6-month scan (P < 0.01) in both groups. Muscle strength was similar in both groups at any time. There was a nonsignificant trend (P ≤ 0.1) toward less pain and higher confidence with early rehabilitation. One reinjury was recorded. In conclusion, our data showed prolonged tissue repair with the initial response linked to muscle atrophy but did not explain why early rehabilitation onset accelerated recovery considering that structural and functional recovery was similar with early and delayed rehabilitation.


Assuntos
Traumatismos em Atletas/reabilitação , Força Muscular , Músculo Esquelético/lesões , Dor , Entorses e Distensões/reabilitação , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem de Perfusão , Recuperação de Função Fisiológica , Volta ao Esporte , Adulto Jovem
3.
Proc Natl Acad Sci U S A ; 114(41): E8618-E8627, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973866

RESUMO

Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology.


Assuntos
Diferenciação Celular , Fenômenos Fisiológicos Celulares , Tamanho Celular , Células-Tronco Mesenquimais/fisiologia , Água/metabolismo , Animais , Linhagem da Célula , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C
4.
Biochim Biophys Acta ; 1853(11 Pt B): 3038-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26130089

RESUMO

The intracellular cytoskeleton is an active dynamic network of filaments and associated binding proteins that control key cellular properties, such as cell shape and mechanics. Due to the inherent complexity of the cell, reconstituted model systems have been successfully employed to gain an understanding of the fundamental physics governing cytoskeletal processes. Here, we review recent advances and key aspects of these reconstituted systems. We focus on the importance of assembly kinetics and dynamic arrest in determining network mechanics, and highlight novel emergent behavior occurring through interactions between cytoskeletal components in more complex networks incorporating multiple biopolymers and molecular motors.


Assuntos
Citoesqueleto/genética , Modelos Químicos , Animais , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Sistema Livre de Células/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos
5.
Cell ; 158(4): 822-832, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126787

RESUMO

Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states.


Assuntos
Citoplasma/química , Microscopia de Força Atômica/métodos , Animais , Fenômenos Biomecânicos , Embrião de Mamíferos/citologia , Fibroblastos/química , Camundongos , Proteínas/química , Vimentina/química
6.
Bioarchitecture ; 4(4-5): 138-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25759912

RESUMO

The semiflexible polymers filamentous actin (F-actin) and intermediate filaments (IF) both form complex networks within the cell, and together are key determinants of cellular stiffness. While the mechanics of F-actin networks together with stiff microtubules have been characterized, the interplay between F-actin and IF networks is largely unknown, necessitating the study of composite networks using mixtures of semiflexible biopolymers. We employ bulk rheology in a simplified in vitro system to uncover the fundamental mechanical interactions between networks of the 2 semiflexible polymers, F-actin and vimentin IF. Surprisingly, co-polymerization of actin and vimentin can produce composite networks either stronger or weaker than pure F-actin networks. We show that this effect occurs through steric constraints imposed by IF on F-actin during network formation and filament crosslinking, highlighting novel emergent behavior in composite semiflexible networks.


Assuntos
Actinas/metabolismo , Biopolímeros/metabolismo , Vimentina/metabolismo , Filamentos Intermediários , Reologia
7.
Biophys J ; 105(7): 1562-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24094397

RESUMO

The mechanical properties of a cell determine many aspects of its behavior, and these mechanics are largely determined by the cytoskeleton. Although the contribution of actin filaments and microtubules to the mechanics of cells has been investigated in great detail, relatively little is known about the contribution of the third major cytoskeletal component, intermediate filaments (IFs). To determine the role of vimentin IF (VIF) in modulating intracellular and cortical mechanics, we carried out studies using mouse embryonic fibroblasts (mEFs) derived from wild-type or vimentin(-/-) mice. The VIFs contribute little to cortical stiffness but are critical for regulating intracellular mechanics. Active microrheology measurements using optical tweezers in living cells reveal that the presence of VIFs doubles the value of the cytoplasmic shear modulus to ∼10 Pa. The higher levels of cytoplasmic stiffness appear to stabilize organelles in the cell, as measured by tracking endogenous vesicle movement. These studies show that VIFs both increase the mechanical integrity of cells and localize intracellular components.


Assuntos
Citoplasma/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Vimentina/metabolismo , Animais , Vesículas Citoplasmáticas/metabolismo , Citoesqueleto/ultraestrutura , Fibroblastos/ultraestrutura , Camundongos , Camundongos Knockout , Pinças Ópticas , Transporte Proteico , Reologia , Resistência ao Cisalhamento , Vimentina/genética
8.
PLoS One ; 8(4): e62461, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626821

RESUMO

Increased aortic stiffness is an acknowledged predictor and cause of cardiovascular disease. The sources and mechanisms of vascular stiffness are not well understood, although the extracellular matrix (ECM) has been assumed to be a major component. We tested here the hypothesis that the focal adhesions (FAs) connecting the cortical cytoskeleton of vascular smooth muscle cells (VSMCs) to the matrix in the aortic wall are a component of aortic stiffness and that this component is dynamically regulated. First, we examined a model system in which magnetic tweezers could be used to monitor cellular cortical stiffness, serum-starved A7r5 aortic smooth muscle cells. Lysophosphatidic acid (LPA), an activator of myosin that increases cell contractility, increased cortical stiffness. A small molecule inhibitor of Src-dependent FA recycling, PP2, was found to significantly inhibit LPA-induced increases in cortical stiffness, as well as tension-induced increases in FA size. To directly test the applicability of these results to force and stiffness development at the level of vascular tissue, we monitored mouse aorta ring stiffness with small sinusoidal length oscillations during agonist-induced contraction. The alpha-agonist phenylephrine, which also increases myosin activation and contractility, increased tissue stress and stiffness in a PP2- and FAK inhibitor 14-attenuated manner. Subsequent phosphotyrosine screening and follow-up with phosphosite-specific antibodies confirmed that the effects of PP2 and FAK inhibitor 14 in vascular tissue involve FA proteins, including FAK, CAS, and paxillin. Thus, in the present study we identify, for the first time, the FA of the VSMC, in particular the FAK-Src signaling complex, as a significant subcellular regulator of aortic stiffness and stress.


Assuntos
Aorta/metabolismo , Matriz Extracelular/metabolismo , Adesões Focais , Músculo Liso Vascular/metabolismo , Rigidez Vascular , Animais , Aorta/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/efeitos dos fármacos , Técnicas In Vitro , Lisofosfolipídeos/farmacologia , Contração Muscular , Músculo Liso Vascular/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação , Pirimidinas/farmacologia , Ratos , Rigidez Vascular/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...